Table of contents

Change log.. 3

Introduction.. 11

1 Scope. 13

2 Normative references. 14

3 Terms, definitions and abbreviated terms. 15

3.1     Terms defined in other standards. 15

3.2     Terms specific to the present standard. 15

3.3     Abbreviated terms. 18

4 Overview.. 20

4.1     Plasma interaction effects. 20

4.1.1      Presentation. 20

4.1.2      Most common engineering concerns. 20

4.1.3      Overview of physical mechanisms. 21

4.2     Relationship with other standards. 23

5 Protection programme. 25

6 Surface material requirements. 26

6.1     Overview.. 26

6.1.1      Description and applicability. 26

6.1.2      Purpose common to all spacecraft 27

6.1.3      A special case: scientific spacecraft with plasma measurement instruments. 27

6.2     General requirements. 27

6.2.1      Maximum permitted voltage. 27

6.2.2      Maximum resistivity. 28

6.3     Electrical continuity, including surfaces and structural and mechanical parts. 28

6.3.1      Grounding of surface metallic parts. 28

6.3.2      Exceptions. 29

6.3.3      Electrical continuity for surface materials. 30

6.4     Surface charging analysis. 33

6.5     Deliberate potentials. 33

6.6     Testing of materials and assemblies. 33

6.6.1      General 33

6.6.2      Material characterization tests. 34

6.6.3      Material and assembly qualification. 35

6.7     Scientific spacecraft with plasma measurement instruments. 35

6.8     Verification. 36

6.8.1      Grounding. 36

6.8.2      Material selection. 36

6.8.3      Environmental effects. 36

6.8.4      Computer modelling. 37

6.9     Triggering of ESD.. 37

7 Secondary arc requirements. 38

7.1     Description and applicability. 38

7.2     Solar arrays. 39

7.2.1      Overview.. 39

7.2.2      General requirement 39

7.2.3      Testing of solar arrays. 39

7.3     Other exposed parts of the power system including solar array drive mechanisms. 43

8 High voltage system requirements. 45

8.1     Description. 45

8.2     Requirements. 45

8.3     Validation. 45

9 Internal parts and materials requirements. 46

9.1     Description. 46

9.2     General 46

9.2.1      Internal charging and discharge effects. 46

9.2.2      Grounding and connectivity. 46

9.2.3      Dielectric electric fields and voltages. 47

9.3     Validation. 48

10 Tether requirements. 51

10.1   Description. 51

10.2   General 51

10.2.1    Hazards arising on tethered spacecraft due to voltages generated by conductive tethers  51

10.2.2    Current collection and resulting problems. 51

10.2.3    Hazards arising from high currents flowing through the tether and spacecraft structures  52

10.2.4    Continuity of insulation. 52

10.2.5    Hazards from undesired conductive paths. 52

10.2.6    Hazards from electro-dynamic tether oscillations. 52

10.2.7    Other effects. 52

10.3   Validation. 53

11 Electric propulsion requirements. 54

11.1   Overview.. 54

11.1.1    Description. 54

11.1.2    Coverage of the requirements. 54

11.2   General 56

11.2.1    Spacecraft neutralization. 56

11.2.2    Beam neutralization. 57

11.2.3    Contamination. 57

11.2.4    Sputtering. 58

11.2.5    Neutral gas effects. 58

11.3   Validation. 58

11.3.1    Ground testing. 58

11.3.2    Computer modelling characteristics. 59

11.3.3    In-flight monitoring. 59

11.3.4    Sputtering. 59

11.3.5    Neutral gas effects. 59

Annex A (normative) Electrical hazard mitigation plan - DRD.. 61

Annex B (informative) Tailoring guidelines. 63

B.1    Overview.. 63

B.2    LEO.. 63

B.2.1      General 63

B.2.2      LEO orbits with high inclination. 64

B.3    MEO and GEO orbits. 64

B.4    Spacecraft with onboard plasma detectors. 64

B.5    Tethered spacecraft 65

B.6    Active spacecraft 65

B.7    Solar Wind. 65

B.8    Other planetary magnetospheres. 65

Annex C (informative)   Physical background to the requirements. 66

C.1    Introduction. 66

C.2    Definition of symbols. 66

C.3    Electrostatic sheaths. 66

C.3.1     Introduction. 66

C.3.2     The electrostatic potential 67

C.3.3     The Debye length. 67

C.3.4     Presheath. 68

C.3.5     Models of current through the sheath. 69

C.3.6     Thin sheath – space-charge-limited model 69

C.3.7     Thick sheath – orbit motion limited (OML) model 70

C.3.8     General case. 71

C.3.9     Magnetic field modification of charging currents. 71

C.4    Current collection and grounding to the plasma. 71

C.5    External surface charging. 72

C.5.1     Definition. 72

C.5.2     Processes. 72

C.5.3     Effects. 73

C.5.4     Surface emission processes. 73

C.5.5     Floating potential 74

C.5.6     Conductivity and resistivity. 75

C.5.7     Time scales. 77

C.6    Spacecraft motion effects. 77

C.6.1     Wakes. 77

C.6.2     Motion across the magnetic field. 80

C.7    Induced plasmas. 81

C.7.1     Definition. 81

C.7.2     Electric propulsion thrusters. 82

C.7.3     Induced plasma characteristics. 82

C.7.4     Charge-exchange effects. 83

C.7.5     Neutral particle effects. 84

C.7.6     Effect on floating potential 84

C.8    Internal and deep-dielectric charging. 84

C.8.1     Definition. 84

C.8.2     Relationship to surface charging. 85

C.8.3     Charge deposition. 86

C.8.4     Material conductivity. 86

C.8.5     Time dependence. 89

C.8.6     Geometric considerations. 89

C.8.7     Isolated internal conductors. 90

C.8.8     Electric field sensitive systems. 90

C.9    Discharges and transients. 91

C.9.1     General definition. 91

C.9.2     Review of the process. 91

C.9.3     Dielectric material discharge. 92

C.9.4     Metallic discharge. 94

C.9.5     Internal dielectric discharge. 95

C.9.6     Secondary powered discharge. 96

C.9.7     Discharge thresholds. 96

Annex D (informative)  Charging simulation.. 98

D.1    Surface charging codes. 98

D.1.1     Introduction. 98

D.2    Internal charging codes. 100

D.2.1     DICTAT. 100

D.2.2     ESADDC.. 100

D.2.3     GEANT-4. 101

D.2.4     NOVICE.. 101

D.3    Environment model for internal charging. 101

D.3.1     FLUMIC.. 101

D.3.2     Worst case GEO spectrum.. 101

Annex E (informative) Testing and measurement. 102

E.1    Definition of symbols. 102

E.2    Solar array testing. 102

E.2.1      Solar cell sample. 102

E.2.2      Pre-testing of the solar array simulator (SAS) 103

E.2.3      Solar array test procedure. 105

E.2.4      Other elements. 109

E.2.5      The solar panel simulation device. 110

E.3    Measurement of conductivity and resistivity. 111

E.3.1      Determination of intrinsic bulk conductivity by direct measurement 111

E.3.2      Determination of radiation-induced conductivity coefficients by direct measurement 113

E.3.3      Determination of conductivity and radiation-induced conductivity by electron irradiation  114

E.3.4      The ASTM method for measurement of surface resistivity and its adaptation for space used materials. 114

References. 116

Bibliography. 120

 

Figures

Figure 6‑1: Applicability of electrical continuity requirements. 30

Figure 7‑1: Solar array test set-up. 42

Figure C-1 : Schematic diagram of potential variation through sheath and pre-sheath. 68

Figure C-2 : Example secondary yield curve. 74

Figure C-3 : Schematic diagram of wake structure around an object at relative motion with respect to a plasma. 78

Figure C-4 : Schematic diagram of void region. 79

Figure C-5 : Schematic diagram of internal charging in a planar dielectric. 85

Figure C-6 : Dielectric discharge mechanism. 93

Figure C-7 :Shape of the current in relation to discharge starting point. 93

Figure C-8 : Example of discharge on pierced aluminized Teflon® irradiated by electrons with energies ranging from 0 to 220 keV. 94

Figure C-9 : Schematic diagram of discharge at a triple point in the inverted voltage gradient configuration with potential contours indicated by colour scale. 95

Figure E-1 : Photograph of solar cells sample – Front face & Rear face (Stentor Sample. Picture from Denis Payan - CNES®). 103

Figure E-2 : Schematic diagram of power supply test circuit 104

Figure E-3 : Example of a measured power source switch response. 104

Figure E-4 : Example solar array simulator 105

Figure E-5 : Absolute capacitance of the satellite. 106

Figure E-6 : Junction capacitance of a cell versus to voltage. 108

Figure E-7 : The shortened solar array sample and the missing capacitances. 109

Figure E-8 : Discharging circuit oscillations. 110

Figure E-9 : Effect of an added resistance in the discharging circuit (SAS + resistance) 110

Figure E-10 : Setup simulating the satellite including flashover current 111

Figure E-11 : Basic arrangement of apparatus for measuring dielectric conductivity in planar samples  112

Figure E-12 : Arrangement for measuring cable dielectric conductivity and cross-section through co-axial cable. 112

Figure E-13 : Arrangement for carrying out conductivity tests on planar samples under irradiation  113

Figure E-14 : Basic experimental set up for surface conductivity. 115

 

Tables

Table 4‑1: List of electrostatic and other plasma interaction effects on space systems. 22

Table 7‑1: Tested voltage-current combinations. 39

Table 7‑2: Typical inductance values for cables. 43

Table C-1 : Parameters in different regions in space. 68

Table C-2 : Typical plasma parameters for LEO and GEO.. 79

Table C-3 : Plasma conditions on exit plane of several electric propulsion thrusters. 83

Table C-4 : Emission versus backflow current magnitudes for several electric propulsion thrusters  83

Table C-5 : Value of Ea for several materials. 87