Table of contents

Change log.. 3

Introduction.. 15

1 Scope. 16

2 Normative references. 17

3 Terms, definitions and abbreviated terms. 19

3.1     Terms defined in other standards. 19

3.2     Terms specific to the present standard. 19

3.3     Abbreviated terms. 28

4 Gravity. 31

4.1     Introduction and description. 31

4.1.1      Introduction. 31

4.1.2      Gravity model formulation. 31

4.1.3      Third body gravitation. 33

4.1.4      Tidal effects. 33

4.2     Requirements for model selection and application. 33

4.2.1      General requirements for gravity models. 33

4.2.2      Selection and application of gravity models. 34

5 Geomagnetic fields. 35

5.1     Introduction and description. 35

5.1.1      The geomagnetic field and its sources. 35

5.1.2      The internal field. 35

5.1.3      External field: ionospheric components. 36

5.1.4      External magnetic field: magnetospheric components. 36

5.1.5      Models of the internal and external geomagnetic fields... 36

5.2     Requirements for model selection and application. 38

5.2.1      The internal field. 38

5.2.2      The external field. 38

5.3     Tailoring guidelines. 39

6 Natural electromagnetic radiation and indices. 40

6.1     Introduction and description. 40

6.1.1      Introduction. 40

6.1.2      Electromagnetic radiation and indices. 40

6.2     Requirements. 43

6.2.1      Electromagnetic radiation. 43

6.2.2      Reference index values. 44

6.2.3      Tailoring guidelines. 44

6.3     Tables. 45

7 Neutral atmospheres. 47

7.1     Introduction and description. 47

7.1.1      Introduction. 47

7.1.2      Structure of the Earth’s atmosphere. 47

7.1.3      Models of the Earth’s atmosphere... 47

7.1.4      Wind model of the Earth’s homosphere and heterosphere. 48

7.2     Requirements for atmosphere and wind model selection. 49

7.2.1      Earth atmosphere. 49

7.2.2      Earth wind model... 50

7.2.3      Models of the atmospheres of the planets and their satellites. 50

8 Plasmas. 51

8.1     Introduction and description. 51

8.1.1      Introduction. 51

8.1.2      Ionosphere. 51

8.1.3      Plasmasphere. 52

8.1.4      Outer magnetosphere. 52

8.1.5      Solar wind. 53

8.1.6      Magnetosheath. 53

8.1.7      Magnetotail 53

8.1.8      Planetary environments. 54

8.1.9      Induced environments. 54

8.2     Requirements for model selection and application. 54

8.2.1      General 54

8.2.2      Ionosphere... 55

8.2.3      Auroral charging environment 55

8.2.4      Plasmasphere. 56

8.2.5      Outer magnetosphere. 56

8.2.6      The solar wind (interplanetary environment) 57

8.2.7      Other plasma environments. 57

8.2.8      Tables. 58

9 Energetic particle radiation.. 59

9.1     Introduction and description. 59

9.1.1      Introduction. 59

9.1.2      Overview of energetic particle radiation environment and effects. 59

9.2     Requirements for energetic particle radiation environments. 62

9.2.1      Trapped radiation belt fluxes... 62

9.2.2      Solar particle event models... 64

9.2.3      Cosmic ray models ... 65

9.2.4      Geomagnetic shielding. 65

9.2.5      Neutrons. 65

9.2.6      Planetary radiation environments. 66

9.3     Preparation of a radiation environment specification. 66

9.4     Tables. 67

10 Space debris and meteoroids. 68

10.1   Introduction and description. 68

10.1.1    The particulate environment in near Earth space. 68

10.1.2    Space debris... 68

10.1.3    Meteoroids... 69

10.2   Requirements for impact risk assessment and model selection. 69

10.2.1    General requirements for meteoroids and space debris. 69

10.2.2    Model selection and application. 70

10.2.3    The MASTER space debris and meteoroid model 71

10.2.4    The meteoroid model 71

10.2.5    Impact risk assessment 72

10.2.6    Margins and worst case fluxes. 73

11 Contamination.. 74

11.1   Introduction and description. 74

11.1.1    Introduction. 74

11.1.2    Description of molecular contamination. 74

11.1.3    Transport mechanisms. 75

11.1.4    Description of particulate contamination. 75

11.1.5    Transport mechanisms. 76

11.2   Requirements for contamination assessment 76

Annex A (normative) Natural electromagnetic radiation and indices. 77

A.1    Solar activity values for complete solar cycle. 77

A.2    Tables. 78

Annex B (normative) Energetic particle radiation.. 82

B.1    Historical dates of solar maximum and minimum.. 82

B.2    GEO model (IGE-2006)... 82

B.3    ONERA MEOv2 model 82

B.4    FLUMIC model... 83

B.4.1      Overview.. 83

B.4.2      Outer belt (L>2,5 Re) 83

B.4.3      Inner belt (L<2,5 Re) 84

B.5    NASA worst case GEO spectrum.. 85

B.6    ESP solar proton model specification... 85

B.7    Solar ions model 86

B.8    Geomagnetic shielding (Størmer theory)... 86

B.9    Tables. 87

Annex C (normative) Space debris and meteoroids. 99

C.1    Flux models. 99

C.1.1     Meteoroid velocity distribution... 99

C.1.2     Flux enhancement and altitude dependent velocity distribution. 99

C.1.3     Earth shielding and flux enhancement from spacecraft motion. 101

C.1.4     Meteoroid streams. 102

C.2    Tables. 104

Annex D (informative)  Gravitation.. 107

D.1    Gravity models: background. 107

D.2    Guidelines for use. 108

D.3    Availability of models. 110

D.4    Tables. 110

D.5    Figures. 111

Annex E (informative) Geomagnetic fields. 112

E.1    Overview of the effects of the geomagnetic field. 112

E.2    Models of the internal geomagnetic field... 112

E.3    Models of the external geomagnetic field... 113

E.4    Magnetopause boundary. 114

E.5    Geomagnetic coordinate system – B and L ... 114

E.6    Tables. 117

E.7    Figures. 119

Annex F (informative) Natural electromagnetic radiation and indices. 121

F.1    Solar spectrum.. 121

F.2    Solar and geomagnetic indices – additional information. 121

F.2.1      E10.7. 121

F.2.2      F10.7. 121

F.2.3      S10.7. 122

F.2.4      M10.7. 122

F.3    Additional information on short-term variation. 122

F.4    Useful internet references for indices. 123

F.5    Earth electromagnetic radiation. 123

F.5.1      Earth albedo. 123

F.5.2      Earth infrared. 124

F.6    Electromagnetic radiation from other planets. 125

F.6.1      Planetary albedo. 125

F.6.2      Planetary infrared. 125

F.7    Activity indices information. 125

F.8    Tables. 125

F.9    Figures. 126

Annex G (informative) Neutral atmospheres. 129

G.1    Structure of the Earth’s atmosphere. 129

G.2    Development of models of the Earth’s atmosphere. 129

G.3    NRLMSISE-00 and JB-2006 - additional information... 130

G.4    The GRAM series of atmosphere models. 131

G.5    Atmosphere model uncertainties and limitations. 131

G.6    HWM93 additional information. 131

G.7    Planetary atmospheres models. 132

G.7.1     Jupiter 132

G.7.2     Venus. 132

G.7.3     Mars. 133

G.7.4     Saturn. 133

G.7.5     Titan. 133

G.7.6     Neptune. 133

G.7.7     Mercury. 133

G.8    Reference data. 134

G.9    Tables. 135

G.10  Figures. 140

Annex H (informative) Plasmas. 144

H.1    Identification of plasma regions. 144

H.2    Plasma effects on spacecraft 144

H.3    Reference data. 145

H.3.1      Introduction. 145

H.3.2      Ionosphere. 145

H.3.3      Plasmasphere. 145

H.3.4      Outer magnetosphere. 146

H.3.5      Magnetosheath. 146

H.3.6      Magnetotail and distant magnetosheath. 146

H.3.7      Planetary environments. 147

H.3.8      Induced environments. 147

H.4    Tables. 148

H.5    Figures. 151

Annex I (informative) Energetic particle radiation.. 152

I.1      Trapped radiation belts. 152

I.1.1       Basic data. 152

I.1.2       Tailoring guidelines: orbital and mission regimes. 152

I.1.3       Existing trapped radiation models. 153

I.1.4       The South Atlantic Anomaly. 155

I.1.5       Dynamics of the outer radiation belt 156

I.1.6       Internal charging. 156

I.2      Solar particle event models. 156

I.2.1       Overview.. 156

I.2.2       ESP model 157

I.2.3       JPL models. 157

I.2.4       Spectrum of individual events. 158

I.2.5       Event probabilities. 159

I.2.6       Other SEP models. 159

I.3      Cosmic ray environment and effects models. 160

I.4      Geomagnetic shielding. 160

I.5      Atmospheric albedo neutron model 160

I.6      Planetary environments. 161

I.6.1       Overview.. 161

I.6.2       Existing models. 161

I.7      Interplanetary environments. 162

I.8      Tables. 162

I.9      Figures. 164

Annex J (informative) Space debris and meteoroids. 170

J.1     Reference data. 170

J.1.1      Trackable space debris. 170

J.1.2      Reference flux data for space debris and meteoroids. 170

J.2     Additional information on flux models. 171

J.2.1      Meteoroids. 171

J.2.2      Space debris flux models. 172

J.2.3      Model uncertainties. 174

J.3     Impact risk assessment 174

J.3.1      Impact risk analysis procedure. 174

J.3.2      Analysis complexity. 175

J.3.3      Damage assessment 175

J.4     Analysis tools. 176

J.4.1      General 176

J.4.2      Deterministic analysis. 176

J.4.3      Statistical analysis. 176

J.5     Tables. 177

J.6     Figures. 181

Annex K (informative) Contamination modelling and tools. 184

K.1    Models. 184

K.1.1      Overview.. 184

K.1.2      Sources. 184

K.1.3      Transport of molecular contaminants. 186

K.2    Contamination tools. 188

K.2.1      Overview.. 188

K.2.2      COMOVA: COntamination MOdelling and Vent Analysis. 188

K.2.3      ESABASE: OUTGASSING, PLUME-PLUMFLOW and CONTAMINE modules. 188

K.2.4      TRICONTAM.. 189

 

Figures

Figure D-1 : Graphical representation of the EIGEN-GLO4C geoid (note: geoid heights are exaggerated by a factor 10 000). 7

Figure E-1 : The IGRF-10 field strength (nT, contour level = 4 000nT, at 2005) and secular variation (nT yr-1, contour level = 20 nT yr-1, valid for 2005), at geodetic altitude 400 km with respect to the WGS-84 reference ellipsoid). 7

Figure E-2 : The general morphology of model magnetospheric field lines, according to the Tsyganenko 1989 model, showing the seasonal variation, dependent on rotation axis tilt 7

Figure F-1 : Solar spectral irradiance (in red, AM0 (Air Mass 0) is the radiation level outside of the Earth's atmosphere (extraterrestrial), in blue, AM1,5 is the radiation level after passing through the atmosphere 1,5 times, which is about the level at solar zenith angle 48,19°s, an average level at the Earth's surface (terrestrial)). 7

Figure F-2 : Daily solar and geomagnetic activity indices over the last two solar cycles. 7

Figure F-3 : Monthly mean solar and geomagnetic activity indices over the last two solar cycles. 7

Figure G-1 : Temperature profile of the Earth’s atmosphere. 7

Figure G-2 : Variation of the JB-2006 mean air density with altitude for low, moderate, high long and high short term solar and geomagnetic activities. 7

Figure G-3 : Variation of the NRLMSISE­00 mean atomic oxygen with altitude for low, moderate and high long solar and geomagnetic activities. 7

Figure G-4 : Variation of the NRLMSISE­00 mean concentration profile of the atmosphere constituents N2, O, O2, He, Ar, H, N and anomalous O with altitude for moderate solar and geomagnetic activities (F10.7 = F10.7avg = 140, Ap = 15) 7

Figure H-1 : Profile of electron density for solar magnetic local time = 18hr, solar magnetic latitude=0, Kp =0 and 9 from the GCPM for 1/1/1999. 7

Figure I-1 : Contour plots of the proton and electron radiation belts. 7

Figure I-2 : Electron (a) and proton (b) omnidirectional fluxes, integral in energy, on the geomagnetic equator for various energy thresholds. 7

Figure I-3 : Integral omnidirectional fluxes of protons (>10 MeV) and electrons (>10 MeV) at 400 km altitude showing the inner radiation belt’s “South Atlantic anomaly” and, in the case of electrons, the outer radiation belt encountered at high latitudes. 7

Figure I-4 : Comparison of POLE with AE8 (flux vs. Energy) for 15 year mission (with worst case and best case included) 7

Figure I-5 : Comparison of ONERA/GNSS model from 0,28 MeV up to 1,12 MeV (best case, mean case and worst case) with AE8 (flux vs. Energy) for 15 yr mission (with worst case & best case) 7

Figure I-6 : Albedo neutron spectra at 100 km altitude at solar maximum.. 7

Figure I-7 : Albedo neutron spectra at 100 km altitude at solar minimum.. 7

Figure I-8 : Jupiter environment model (proton & electron versions) 7

Figure J-1 : Time evolution of the number of trackable objects in orbit (as of September 2008) 7

Figure J-2 : Semi-major axis distribution of trackable objects in LEO orbits (as of September 2008) 7

Figure J-3 : Distribution of trackable objects as function of their inclination (as of September 2008) 7

Figure J-4 : The HRMP velocity distribution for different altitudes from the Earth surface. . 7

 

Tables

Table 6‑1: Conversion from Kp to ap. 7

Table 6‑2: Electromagnetic radiation values. 7

Table 6‑3: Reference fixed index values. 7

Table 6‑4: Reference index values for variations of ap. 7

Table 8‑1: Worst­case bi­Maxwellian environment 7

Table 8‑2: Solar wind parameters. 7

Table 9‑1: Standard field models to be used with AE8 and AP8. 7

Table A-1 : Solar cycle 23 solar activity indices averaged over 30-day (1 month) intervals. 7

Table B-1 : Minima and maxima of sunspot number cycles. 7

Table B-2 : IGE 2006 GEO average model – electron flux (kev-1cm-2s-1sr-1) according to year in the solar cycle (referred to solar min: 0) and for different energies for a mission duration of 1 year. 7

Table B-3 IGE 2006 GEO upper case model - maximum electron flux (kev-1cm-2s-1sr-1) according to year in the solar cycle (referred to solar min: 0) and for different energies for a mission duration of 1 year. 7

Table B-4 : MEOv2 average case model - average electron flux (Mev-1cm-2s-1sr-1) according to year in the solar cycle  (referred to solar min: 0) and for different energies for a mission duration of 1 year. 7

Table B-5 : MEOv2 upper case model - maximum electron flux (Mev-1cm-2s-1sr-1) according to year in the solar cycle  (referred to solar min: 0) and for different energies for a mission duration of 1 year. 7

Table B-6 : Worst case spectrum for geostationary orbits. 7

Table B-7 : Values of the parameters for the ESP model 7

Table B-8 : Values to scale fluence from >100 MeV to >300 MeV. 7

Table B-9 : CREME-96 solar ion worst 5-minute fluxes in an interplanetary environment 7

Table B-10 : CREME-96 solar ion worst day fluxes in an interplanetary environment 7

Table B-11 : CREME-96 solar ion worst week fluxes in an interplanetary environment 7

Table C-1 : Normalized meteoroid velocity distribution. 7

Table C-2 : The annual meteor streams. 7

Table D-1 : Degree power attenuation for an orbit at 25 000 km altitude. 7

Table D-2 : Coefficients of the EIGEN-GL04C model up to degree and order 8 × 8. 7

Table E-1 : IGRF-10 data for epoch 1960-2010. 7

Table E-2 : Sibeck et al. Magnetopause model 7

Table F-1 : Reference values for average planetary albedo and infra-red radiation. 7

Table G-1 : Altitude profiles of the atmosphere constituents N2, O, O2, He, Ar, H, N and anomalous O for low solar and geomagnetic activities (NRLMSISE-00 model - F10.7 = F10.7avg = 65, Ap = 0) 7

Table G-2 : Altitude profiles of the atmosphere constituents N2, O, O2, He, Ar, H, N and anomalous O for mean solar and geomagnetic activities (NRLMSISE-00 model - F10.7 = F10.7avg = 140, Ap = 15) 7

Table G-3 : Altitude profiles of the atmosphere constituents N2, O, O2, He, Ar, H, N and anomalous O for high long term solar and geomagnetic activities (NRLMSISE-00 model - F10.7 = F10.7avg = 250, Ap = 45) 7

Table G-4 : Altitude profiles of total density r [kg m-3] for low, moderate, high long and high short term solar and geomagnetic activities (JB-2006 model) 7

Table H-1 : Regions encountered by different mission types. 7

Table H-2 : Main engineering concerns due to space plasmas. 7

Table H-3 : Ionospheric electron density profiles derived from IRI-2007 for date 01/01/2000, lat=0, long=0. 7

Table H-4 : Profile of densities for solar magnetic local time = 18hr, solar magnetic latitude=0, Kp = 5,0 from the GCPM for 1/1/1999. 7

Table H-5 : Typical plasma parameters at geostationary orbit 7

Table H-6 : Typical magnetosheath plasma parameters. 7

Table H-7 : Typical plasma parameters around L2. 7

Table H-8 : Worst-case environments for eclipse charging near Jupiter and Saturn. 7

Table H-9 : Photoelectron sheath parameters. 7

Table H-10 : Some solar UV photoionization rates at 1 AU.. 7

Table I-1 : Characteristics of typical radiation belt particles. 7

Table I-2 : Recommended updated values of the parameters of the JPL model 7

Table I-3 : Proton fluence levels for energy, mission duration and confidence levels from the ESP model with the NASA parameters from Table B-7. 7

Table I-4 : Parameters for the fit to the peak fluxes from the October 1989 events. 7

Table J-1 : Approximate flux ratios for meteoroids for 400 km and 800 km altitudes. 7

Table J-2 : Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle sizes using the MASTER-2005 model 7

Table J-3 : Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle sizes using the MASTER-2005 model 7

Table J-4 : Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle sizes using the MASTER-2005 model 7

Table J-5 : Cumulative number of impacts, N, to a randomly oriented plate for a range of minimum particle masses. 7

Table J-6 : Parameters (appearing in Eq. (C-15) to account for modified meteoroid fluxes encountered by spacecraft in circular Earth orbits at various altitudes. 7